ARHGAP1

Protein-coding gene in humans
ARHGAP1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1AM4, 1GRN, 1OW3, 1RGP, 1TX4, 2NGR

Identifiers
AliasesARHGAP1, CDC42GAP, RHOGAP, RHOGAP1, p50rhoGAP, Rho GTPase activating protein 1
External IDsOMIM: 602732; MGI: 2445003; HomoloGene: 20909; GeneCards: ARHGAP1; OMA:ARHGAP1 - orthologs
Gene location (Human)
Chromosome 11 (human)
Chr.Chromosome 11 (human)[1]
Chromosome 11 (human)
Genomic location for ARHGAP1
Genomic location for ARHGAP1
Band11p11.2Start46,677,080 bp[1]
End46,700,619 bp[1]
Gene location (Mouse)
Chromosome 2 (mouse)
Chr.Chromosome 2 (mouse)[2]
Chromosome 2 (mouse)
Genomic location for ARHGAP1
Genomic location for ARHGAP1
Band2|2 E1Start91,480,205 bp[2]
End91,502,671 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • gingival epithelium

  • saphenous vein

  • epithelium of esophagus

  • parietal pleura

  • visceral pleura

  • amniotic fluid

  • urethra

  • decidua

  • tail of epididymis

  • vena cava
Top expressed in
  • yolk sac

  • granulocyte

  • corneal stroma

  • lip

  • genital tubercle

  • tail of embryo

  • morula

  • morula

  • blastocyst

  • dentate gyrus of hippocampal formation granule cell
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
  • SH3 domain binding
  • protein binding
  • GTPase activator activity
  • cadherin binding
Cellular component
  • cytosol
  • extracellular exosome
  • cytoplasm
  • endosome membrane
  • perinuclear region of cytoplasm
  • sorting endosome
  • membrane
  • integral component of membrane
Biological process
  • regulation of small GTPase mediated signal transduction
  • Rho protein signal transduction
  • signal transduction
  • positive regulation of GTPase activity
  • small GTPase mediated signal transduction
  • positive regulation of signal transduction
  • transferrin transport
  • iron ion import across cell outer membrane
  • negative regulation of endocytic recycling
  • endosomal transport
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

392

228359

Ensembl

ENSG00000175220

ENSMUSG00000027247

UniProt

Q07960

Q5FWK3

RefSeq (mRNA)

NM_004308

NM_001145902
NM_146124
NM_001359970

RefSeq (protein)

NP_004299

NP_001139374
NP_666236
NP_001346899

Location (UCSC)Chr 11: 46.68 – 46.7 MbChr 2: 91.48 – 91.5 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Rho GTPase-activating protein 1 is an enzyme that in humans is encoded by the ARHGAP1 gene.[5][6]

Interactions

ARHGAP1 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000175220 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000027247 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Lancaster CA, Taylor-Harris PM, Self AJ, Brill S, van Erp HE, Hall A (February 1994). "Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases". J. Biol. Chem. 269 (2): 1137–42. doi:10.1016/S0021-9258(17)42232-0. PMID 8288572.
  6. ^ "Entrez Gene: ARHGAP1 Rho GTPase activating protein 1".
  7. ^ a b Low BC, Lim YP, Lim J, Wong ES, Guy GR (November 1999). "Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42". J. Biol. Chem. 274 (46): 33123–30. doi:10.1074/jbc.274.46.33123. PMID 10551883.
  8. ^ Low BC, Seow KT, Guy GR (December 2000). "The BNIP-2 and Cdc42GAP homology domain of BNIP-2 mediates its homophilic association and heterophilic interaction with Cdc42GAP". J. Biol. Chem. 275 (48): 37742–51. doi:10.1074/jbc.M004897200. PMID 10954711.
  9. ^ Nagata Ki, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T, Hirokawa N, Hall A (January 1998). "The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3". EMBO J. 17 (1): 149–58. doi:10.1093/emboj/17.1.149. PMC 1170366. PMID 9427749.
  10. ^ a b Li R, Zhang B, Zheng Y (December 1997). "Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190". J. Biol. Chem. 272 (52): 32830–5. doi:10.1074/jbc.272.52.32830. PMID 9407060.
  11. ^ a b Zhang B, Chernoff J, Zheng Y (April 1998). "Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA". J. Biol. Chem. 273 (15): 8776–82. doi:10.1074/jbc.273.15.8776. PMID 9535855.
  12. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  13. ^ Zhang B, Zheng Y (April 1998). "Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1". Biochemistry. 37 (15): 5249–57. doi:10.1021/bi9718447. PMID 9548756.

External links

Further reading

  • Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A (1991). "Bcr encodes a GTPase-activating protein for p21rac". Nature. 351 (6325): 400–2. Bibcode:1991Natur.351..400D. doi:10.1038/351400a0. PMID 1903516. S2CID 4233469.
  • Garrett MD, Major GN, Totty N, Hall A (1991). "Purification and N-terminal sequence of the p21rho GTPase-activating protein, rho GAP". Biochem. J. 276 ( Pt 3) (3): 833–6. doi:10.1042/bj2760833. PMC 1151079. PMID 1905930.
  • Barfod ET, Zheng Y, Kuang WJ, Hart MJ, Evans T, Cerione RA, Ashkenazi A (1993). "Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain". J. Biol. Chem. 268 (35): 26059–62. doi:10.1016/S0021-9258(19)74277-X. PMID 8253717.
  • Aspenström P, Lindberg U, Hall A (1996). "Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome". Curr. Biol. 6 (1): 70–5. doi:10.1016/S0960-9822(02)00423-2. PMID 8805223.
  • Barrett T, Xiao B, Dodson EJ, Dodson G, Ludbrook SB, Nurmahomed K, Gamblin SJ, Musacchio A, Smerdon SJ, Eccleston JF (1997). "The structure of the GTPase-activating domain from p50rhoGAP". Nature. 385 (6615): 458–61. Bibcode:1997Natur.385..458B. doi:10.1038/385458a0. PMID 9009196. S2CID 4235645.
  • Hu KQ, Settleman J (1997). "Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation". EMBO J. 16 (3): 473–83. doi:10.1093/emboj/16.3.473. PMC 1169651. PMID 9034330.
  • Rittinger K, Walker PA, Eccleston JF, Nurmahomed K, Owen D, Laue E, Gamblin SJ, Smerdon SJ (1997). "Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP". Nature. 388 (6643): 693–7. doi:10.1038/41805. PMID 9262406. S2CID 4415826.
  • Zhang B, Wang ZX, Zheng Y (1997). "Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains". J. Biol. Chem. 272 (35): 21999–2007. doi:10.1074/jbc.272.35.21999. PMID 9268338.
  • Li R, Zhang B, Zheng Y (1997). "Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190". J. Biol. Chem. 272 (52): 32830–5. doi:10.1074/jbc.272.52.32830. PMID 9407060.
  • Zhang B, Zheng Y (1998). "Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1". Biochemistry. 37 (15): 5249–57. doi:10.1021/bi9718447. PMID 9548756.
  • Low BC, Lim YP, Lim J, Wong ES, Guy GR (1999). "Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42". J. Biol. Chem. 274 (46): 33123–30. doi:10.1074/jbc.274.46.33123. PMID 10551883.
  • Graham DL, Eccleston JF, Chung CW, Lowe PN (1999). "Magnesium fluoride-dependent binding of small G proteins to their GTPase-activating proteins". Biochemistry. 38 (45): 14981–7. doi:10.1021/bi991358e. PMID 10555980.
  • Low BC, Seow KT, Guy GR (2000). "Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2". J. Biol. Chem. 275 (19): 14415–22. doi:10.1074/jbc.275.19.14415. PMID 10799524.
  • Low BC, Seow KT, Guy GR (2000). "The BNIP-2 and Cdc42GAP homology domain of BNIP-2 mediates its homophilic association and heterophilic interaction with Cdc42GAP". J. Biol. Chem. 275 (48): 37742–51. doi:10.1074/jbc.M004897200. PMID 10954711.
  • Zhou YT, Soh UJ, Shang X, Guy GR, Low BC (2002). "The BNIP-2 and Cdc42GAP homology/Sec14p-like domain of BNIP-Salpha is a novel apoptosis-inducing sequence". J. Biol. Chem. 277 (9): 7483–92. doi:10.1074/jbc.M109459200. PMID 11741952.
  • Fidyk NJ, Cerione RA (2002). "Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis". Biochemistry. 41 (52): 15644–53. doi:10.1021/bi026413p. PMID 12501193.
  • Qin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J (2003). "BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis". Biochem. Biophys. Res. Commun. 308 (2): 379–85. doi:10.1016/S0006-291X(03)01387-1. PMID 12901880.
  • Shang X, Zhou YT, Low BC (2003). "Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel Rho GTPase-activating protein, BPGAP1". J. Biol. Chem. 278 (46): 45903–14. doi:10.1074/jbc.M304514200. PMID 12944407.
  • v
  • t
  • e
  • 1am4: COMPLEX BETWEEN CDC42HS.GMPPNP AND P50 RHOGAP (H. SAPIENS)
    1am4: COMPLEX BETWEEN CDC42HS.GMPPNP AND P50 RHOGAP (H. SAPIENS)
  • 1grn: CRYSTAL STRUCTURE OF THE CDC42/CDC42GAP/ALF3 COMPLEX.
    1grn: CRYSTAL STRUCTURE OF THE CDC42/CDC42GAP/ALF3 COMPLEX.
  • 1ow3: Crystal Structure of RhoA.GDP.MgF3-in Complex with RhoGAP
    1ow3: Crystal Structure of RhoA.GDP.MgF3-in Complex with RhoGAP
  • 1rgp: GTPASE-ACTIVATION DOMAIN FROM RHOGAP
    1rgp: GTPASE-ACTIVATION DOMAIN FROM RHOGAP
  • 1tx4: RHO/RHOGAP/GDP(DOT)ALF4 COMPLEX
    1tx4: RHO/RHOGAP/GDP(DOT)ALF4 COMPLEX
  • 2ngr: TRANSITION STATE COMPLEX FOR GTP HYDROLYSIS BY CDC42: COMPARISONS OF THE HIGH RESOLUTION STRUCTURES FOR CDC42 BOUND TO THE ACTIVE AND CATALYTICALLY COMPROMISED FORMS OF THE CDC42-GAP.
    2ngr: TRANSITION STATE COMPLEX FOR GTP HYDROLYSIS BY CDC42: COMPARISONS OF THE HIGH RESOLUTION STRUCTURES FOR CDC42 BOUND TO THE ACTIVE AND CATALYTICALLY COMPROMISED FORMS OF THE CDC42-GAP.


Stub icon

This article on a gene on human chromosome 11 is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e